Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature dependence of nonradiative recombination in low-band gap InxGa1-xAs/InAsyP1-y double heterostructures grown on InP substrates

Identifieur interne : 00C114 ( Main/Repository ); précédent : 00C113; suivant : 00C115

Temperature dependence of nonradiative recombination in low-band gap InxGa1-xAs/InAsyP1-y double heterostructures grown on InP substrates

Auteurs : RBID : Pascal:03-0318044

Descripteurs français

English descriptors

Abstract

We have used photoexcitation-dependent radiative efficiency measurements to investigate the rates of defect-related, radiative, and Auger recombination in lattice-matched InxGa1-xAs/InAsyP1-y double heterostructures on InP substrates. Temperature dependence is used to discern the underlying mechanisms responsible for the nonradiative recombination processes. We find that defect-related recombination decreases with an increase in the temperature when the epistructure is lattice matched to the substrate (x=0.53). In contrast, when the epistructure is lattice mismatched to the substrate, defect-related recombination increases slowly with the temperature. The difference between the lattice-matched and mismatched cases is related to fundamental changes in the defect-related density of states function. The temperature dependence in the lattice-mismatched structures is attributed to two competing effects: wider carrier diffusion, which augments the capture rate, and thermally activated escape, which reduces the occupation of shallow traps. The band gap and temperature dependence of the Auger rate demonstrate that the conduction to heavy hole band/splitoff to heavy hole band mechanism generally dominates Auger recombination in undoped low-band gap InxGa1-xAs. With this interpretation, our results give a spin-orbit valence split-off band effective mass of mso=(0.12±0.02)m0. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0318044

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature dependence of nonradiative recombination in low-band gap In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/InAs
<sub>y</sub>
P
<sub>1-y</sub>
double heterostructures grown on InP substrates</title>
<author>
<name sortKey="Gfroerer, T H" uniqKey="Gfroerer T">T. H. Gfroerer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Davidson College, Davidson, North Carolina 28035</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Physics, Davidson College, Davidson</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Spelman College, Atlanta, Georgia 30314</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Spelman College, Atlanta</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Priestley, L P" uniqKey="Priestley L">L. P. Priestley</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Davidson College, Davidson, North Carolina 28035</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Physics, Davidson College, Davidson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fairley, M F" uniqKey="Fairley M">M. F. Fairley</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Davidson College, Davidson, North Carolina 28035</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Physics, Davidson College, Davidson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wanlass, M W" uniqKey="Wanlass M">M. W. Wanlass</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Physics, Davidson College, Davidson, North Carolina 28035</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Physics, Davidson College, Davidson</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0318044</idno>
<date when="2003-08-01">2003-08-01</date>
<idno type="stanalyst">PASCAL 03-0318044 AIP</idno>
<idno type="RBID">Pascal:03-0318044</idno>
<idno type="wicri:Area/Main/Corpus">00CF59</idno>
<idno type="wicri:Area/Main/Repository">00C114</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Auger effect</term>
<term>Defect states</term>
<term>Effective mass</term>
<term>Electron-hole recombination</term>
<term>Electronic density of states</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Nonradiative transitions</term>
<term>Photoluminescence</term>
<term>Semiconductor heterojunctions</term>
<term>Spin-orbit interactions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7855C</term>
<term>7340K</term>
<term>7155E</term>
<term>7120N</term>
<term>7350G</term>
<term>7170E</term>
<term>7118</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Transition non radiative</term>
<term>Effet Auger</term>
<term>Recombinaison électron trou</term>
<term>Densité état électron</term>
<term>Bande interdite</term>
<term>Interaction spin orbite</term>
<term>Masse effective</term>
<term>Semiconducteur III-V</term>
<term>Hétérojonction semiconducteur</term>
<term>Photoluminescence</term>
<term>Etat défaut</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have used photoexcitation-dependent radiative efficiency measurements to investigate the rates of defect-related, radiative, and Auger recombination in lattice-matched In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/InAs
<sub>y</sub>
P
<sub>1-y</sub>
double heterostructures on InP substrates. Temperature dependence is used to discern the underlying mechanisms responsible for the nonradiative recombination processes. We find that defect-related recombination decreases with an increase in the temperature when the epistructure is lattice matched to the substrate (x=0.53). In contrast, when the epistructure is lattice mismatched to the substrate, defect-related recombination increases slowly with the temperature. The difference between the lattice-matched and mismatched cases is related to fundamental changes in the defect-related density of states function. The temperature dependence in the lattice-mismatched structures is attributed to two competing effects: wider carrier diffusion, which augments the capture rate, and thermally activated escape, which reduces the occupation of shallow traps. The band gap and temperature dependence of the Auger rate demonstrate that the conduction to heavy hole band/splitoff to heavy hole band mechanism generally dominates Auger recombination in undoped low-band gap In
<sub>x</sub>
Ga
<sub>1-x</sub>
As. With this interpretation, our results give a spin-orbit valence split-off band effective mass of m
<sub>so</sub>
=(0.12±0.02)m
<sub>0</sub>
. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature dependence of nonradiative recombination in low-band gap In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/InAs
<sub>y</sub>
P
<sub>1-y</sub>
double heterostructures grown on InP substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GFROERER (T. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PRIESTLEY (L. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FAIRLEY (M. F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANLASS (M. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Davidson College, Davidson, North Carolina 28035</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Spelman College, Atlanta, Georgia 30314</s1>
</fA14>
<fA14 i1="03">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
</fA14>
<fA20>
<s1>1738-1743</s1>
</fA20>
<fA21>
<s1>2003-08-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0318044</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have used photoexcitation-dependent radiative efficiency measurements to investigate the rates of defect-related, radiative, and Auger recombination in lattice-matched In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/InAs
<sub>y</sub>
P
<sub>1-y</sub>
double heterostructures on InP substrates. Temperature dependence is used to discern the underlying mechanisms responsible for the nonradiative recombination processes. We find that defect-related recombination decreases with an increase in the temperature when the epistructure is lattice matched to the substrate (x=0.53). In contrast, when the epistructure is lattice mismatched to the substrate, defect-related recombination increases slowly with the temperature. The difference between the lattice-matched and mismatched cases is related to fundamental changes in the defect-related density of states function. The temperature dependence in the lattice-mismatched structures is attributed to two competing effects: wider carrier diffusion, which augments the capture rate, and thermally activated escape, which reduces the occupation of shallow traps. The band gap and temperature dependence of the Auger rate demonstrate that the conduction to heavy hole band/splitoff to heavy hole band mechanism generally dominates Auger recombination in undoped low-band gap In
<sub>x</sub>
Ga
<sub>1-x</sub>
As. With this interpretation, our results give a spin-orbit valence split-off band effective mass of m
<sub>so</sub>
=(0.12±0.02)m
<sub>0</sub>
. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70C50G</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A70E</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70A18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7350G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7170E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7118</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Transition non radiative</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nonradiative transitions</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet Auger</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Auger effect</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Recombinaison électron trou</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electron-hole recombination</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Densité état électron</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electronic density of states</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Interaction spin orbite</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Spin-orbit interactions</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Masse effective</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Effective mass</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Etat défaut</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Defect states</s0>
</fC03>
<fN21>
<s1>209</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0329M000358</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0318044
   |texte=   Temperature dependence of nonradiative recombination in low-band gap InxGa1-xAs/InAsyP1-y double heterostructures grown on InP substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024